What is a condition ?
Just like in languages that support exception handling (Java, C++, Python, etc.), a condition represents, for the most part, an âexceptionalâ situation. However, even more so than those languages, a condition in Common Lisp can represent a general situation where some branching in program logic needs to take place, not necessarily due to some error condition. Due to the highly interactive nature of Lisp development (the Lisp image in conjunction with the REPL), this makes perfect sense in a language like Lisp rather than say, a language like Java or even Python, which has a very primitive REPL. In most cases, however, we may not need (or even allow) the interactivity that this system offers us. Thankfully, the same system works just as well even in non-interactive mode.
Letâs dive into it step by step. More resources are given afterwards.
Ignoring all errors, returning nil
Sometimes you know that a function can fail and you just want to ignore it: use ignore-errors:
(ignore-errors
(/ 3 0))
; in: IGNORE-ERRORS (/ 3 0)
; (/ 3 0)
;
; caught STYLE-WARNING:
; Lisp error during constant folding:
; arithmetic error DIVISION-BY-ZERO signalled
; Operation was (/ 3 0).
;
; compilation unit finished
; caught 1 STYLE-WARNING condition
NIL
#<DIVISION-BY-ZERO {1008FF5F13}>
We get a welcome division-by-zero
warning but the code runs well and
it returns two things: nil
and the condition that was signaled. We
could not choose what to return.
Remember that we can inspect
the condition with a right click in Slime.
Catching any condition (handler-case)
ignore-errors
is built from handler-case. We can write the previous
example by catching the general error
but now we can return whatever
we want:
(handler-case (/ 3 0)
(error (c)
(format t "We caught a condition.~&")
(values 0 c)))
; in: HANDLER-CASE (/ 3 0)
; (/ 3 0)
;
; caught STYLE-WARNING:
; Lisp error during constant folding:
; Condition DIVISION-BY-ZERO was signalled.
;
; compilation unit finished
; caught 1 STYLE-WARNING condition
We caught a condition.
0
#<DIVISION-BY-ZERO {1004846AE3}>
We also returned two values, 0 and the signaled condition.
The general form of handler-case
is
(handler-case (code that errors out)
(condition-type (the-condition) ;; <-- optional argument
(code))
(another-condition (the-condition)
...))
Catching a specific condition
We can specify what condition to handle:
(handler-case (/ 3 0)
(division-by-zero (c)
(format t "Caught division by zero: ~a~%" c)))
;; âŚ
;; Caught division by zero: arithmetic error DIVISION-BY-ZERO signalled
;; Operation was (/ 3 0).
;; NIL
This workflow is similar to a try/catch as found in other languages, but we can do more.
handler-case VS handler-bind
handler-case
is similar to the try/catch
forms that we find in
other languages.
handler-bind (see the next examples), is what to use when we need absolute control over what happens when a signal is raised. It allows us to use the debugger and restarts, either interactively or programmatically.
If some library doesnât catch all conditions and lets some bubble out
to us, we can see the restarts (established by restart-case
)
anywhere deep in the stack, including restarts established by other
libraries that this library called. And we can see the stack
trace, with every frame that was called and, in some lisps, even see
local variables and such. Once we handler-case
, we âforgetâ about
this, everything is unwound. handler-bind
does not rewind the
stack.
Before we properly see handler-bind
, letâs study conditions and restarts.
Defining and making conditions
We define conditions with define-condition and we make (initialize) them with make-condition.
(define-condition my-division-by-zero (error)
())
(make-condition 'my-division-by-zero)
;; #<MY-DIVISION-BY-ZERO {1005A5FE43}>
Itâs better if we give more information to it when we create a condition, so letâs use slots:
(define-condition my-division-by-zero (error)
((dividend :initarg :dividend
:initform nil
:reader dividend)) ;; <-- we'll get the dividend with (dividend condition). See the CLOS tutorial if needed.
(:documentation "Custom error when we encounter a division by zero.")) ;; good practice ;)
Now when weâll âsignalâ or âthrowâ the condition in our code weâll be able to populate it with information to be consumed later:
(make-condition 'my-division-by-zero :dividend 3)
;; #<MY-DIVISION-BY-ZERO {1005C18653}>
Note: here's a quick reminder on classes, if you are not fully operational on the Common Lisp Object System.
(make-condition 'my-division-by-zero :dividend 3)
;; ^^ this is the ":initarg"
and :reader dividend
created a generic function that is a âgetterâ
for the dividend of a my-division-by-zero
object:
(make-condition 'my-division-by-zero :dividend 3)
;; #<MY-DIVISION-BY-ZERO {1005C18653}>
(dividend *)
;; 3
an â:accessorâ would be both a getter and a setter.
So, the general form of define-condition
looks and feels like a
regular class definition, but despite the similarities, conditions are
not standard objects.
A difference is that we canât use slot-value
on slots.
Signaling (throwing) conditions: error, warn, signal
We can use error in two ways:
(error "some text")
: signals a condition of type simple-error, and opens-up the interactive debugger.(error 'my-error :message "We did this and that and it didn't work.")
: creates and throws a custom condition with its slot âmessageâ and opens-up the interactive debugger.
With our own condition we can do:
(error 'my-division-by-zero :dividend 3)
;; which is a shortcut for
(error (make-condition 'my-division-by-zero :dividend 3))
Throwing these conditions will enter the interactive debugger, where the user may select a restart.
warn
will not enter the debugger (create warning conditions by subclassing simple-warning).
Use signal if you do not want to enter the debugger, but you still want to signal to the upper levels that something exceptional happened.
And that can be anything. For example, it can be used to track
progress during an operation. You would create a condition with a
percent
slot, signal one when progress is made, and the
higher level code would handle it and display it to the user. See the
resources below for more.
Conditions hierarchy
The class precedence list of simple-error
is simple-error, simple-condition, error, serious-condition, condition, t
.
The class precedence list of simple-warning
is simple-warning, simple-condition, warning, condition, t
.
Custom error messages (:report)
So far, when throwing our error, we saw this default text in the debugger:
Condition COMMON-LISP-USER::MY-DIVISION-BY-ZERO was signalled.
[Condition of type MY-DIVISION-BY-ZERO]
We can do better by giving a :report
function in our condition declaration:
(define-condition my-division-by-zero (error)
((dividend :initarg :dividend
:initform nil
:accessor dividend))
;; the :report is the message into the debugger:
(:report (lambda (condition stream)
(format stream
"You were going to divide ~a by zero.~&"
(dividend condition)))))
Now:
(error 'my-division-by-zero :dividend 3)
;; Debugger:
;;
;; You were going to divide 3 by zero.
;; [Condition of type MY-DIVISION-BY-ZERO]
Inspecting the stacktrace
Thatâs another quick reminder, not a Slime tutorial. In the debugger,
you can inspect the stacktrace, the arguments to the function calls,
go to the erroneous source line (with v
in Slime), execute code in
the context (e
), etc.
Often, you can edit a buggy function, compile it (with the C-c C-c
shortcut in Slime), choose the âRETRYâ restart and see your code pass.
All this depends on compiler options, wether it is optimized for debugging, speed or security.
See our debugging section.
Restarts, interactive choices in the debugger
Restarts are the choices we get in the debugger, which always has the
RETRY
and ABORT
ones.
By handling restarts we can start over the operation as if the error didnât occur (as seen in the stack).
Using assertâs optional restart
In its simple form assert
does what we know:
(assert (realp 3))
;; NIL = passed
When the assertion fails, we are prompted into the debugger:
(defun divide (x y)
(assert (not (zerop y)))
(/ x y))
(divide 3 0)
;; The assertion (NOT #1=(ZEROP Y)) failed with #1# = T.
;; [Condition of type SIMPLE-ERROR]
;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion.
;; 1: [RETRY] Retry SLIME REPL evaluation request.
;; âŚ
It also accepts an optional parameter to offer to change values:
(defun divide (x y)
(assert (not (zerop y))
(y) ;; list of values that we can change.
"Y can not be zero. Please change it") ;; custom error message.
(/ x y))
Now we get a new restart that offers to change the value of Y:
(divide 3 0)
;; Y can not be zero. Please change it
;; [Condition of type SIMPLE-ERROR]
;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion with new value for Y. <--- new restart
;; 1: [RETRY] Retry SLIME REPL evaluation request.
;; âŚ
and when we choose it, we are prompted for a new value in the REPL:
The old value of Y is 0.
Do you want to supply a new value? (y or n) y
Type a form to be evaluated:
2
3/2 ;; and our result.
Defining restarts (restart-case)
All this is good but we might want more custom choices. We can add restarts on the top of the list by wrapping our function call inside restart-case.
(defun divide-with-restarts (x y)
(restart-case (/ x y)
(return-zero () ;; <-- creates a new restart called "RETURN-ZERO"
0)
(divide-by-one ()
(/ x 1))))
(divide-with-restarts 3 0)
In case of any error (weâll improve on that with handler-bind
),
weâll get those two new choices at the top of the debugger:
Thatâs allright but letâs just write more human-friendy âreportsâ:
(defun divide-with-restarts (x y)
(restart-case (/ x y)
(return-zero ()
:report "Return 0" ;; <-- added
0)
(divide-by-one ()
:report "Divide by 1"
(/ x 1))))
(divide-with-restarts 3 0)
;; Nicer restarts:
;; 0: [RETURN-ZERO] Return 0
;; 1: [DIVIDE-BY-ONE] Divide by 1
Thatâs better, but we lack the ability to change an operand, as we did
with the assert
example above.
Changing a variable with restarts
The two restarts we defined didnât ask for a new value. To do this, we
add an :interactive
lambda function to the restart, that asks for
the user a new value with the input method of its choice. Here, weâll
use the regular read
.
(defun divide-with-restarts (x y)
(restart-case (/ x y)
(return-zero ()
:report "Return 0"
0)
(divide-by-one ()
:report "Divide by 1"
(/ x 1))
(set-new-divisor (value)
:report "Enter a new divisor"
;;
;; Ask the user for a new value:
:interactive (lambda () (prompt-new-value "Please enter a new divisor: "))
;;
;; and call the divide function with the new valueâŚ
;; ⌠possibly catching bad input again!
(divide-with-restarts x value))))
(defun prompt-new-value (prompt)
(format *query-io* prompt) ;; *query-io*: the special stream to make user queries.
(force-output *query-io*) ;; Ensure the user sees what he types.
(list (read *query-io*))) ;; We must return a list.
(divide-with-restarts 3 0)
When calling it, we are offered a new restart, we enter a new value, and we get our result:
(divide-with-restarts 3 0)
;; Debugger:
;;
;; 2: [SET-NEW-DIVISOR] Enter a new divisor
;;
;; Please enter a new divisor: 10
;;
;; 3/10
Oh, you prefer a graphical user interface? We can use the zenity
command line interface on GNU/Linux.
(defun prompt-new-value (prompt)
(list
(let ((input
;; We capture the program's output to a string.
(with-output-to-string (s)
(let* ((*standard-output* s))
(uiop:run-program `("zenity"
"--forms"
,(format nil "--add-entry=~a" prompt))
:output s)))))
;; We get a string and we want a number.
;; We could also use parse-integer, the parse-number library, etc.
(read-from-string input))))
Now try again and you should get a little window asking for a new number:
Thatâs fun, but thatâs not all. Choosing restarts manually is not always (or often?) satisfactory. And by handling restarts we can start over the operation as if the error didnât occur, as seen in the stack.
Calling restarts programmatically (handler-bind, invoke-restart)
We have a piece of code that we know can throw conditions. Here,
divide-with-restarts
can signal an error about a division by
zero. What we want to do, is our higher-level code to automatically
handle it and call the appropriate restart.
We can do this with handler-bind
and invoke-restart:
(defun divide-and-handle-error (x y)
(handler-bind
((division-by-zero (lambda (c)
(format t "Got error: ~a~%" c) ;; error-message
(format t "and will divide by 1~&")
(invoke-restart 'divide-by-one))))
(divide-with-restarts x y)))
(divide-and-handle-error 3 0)
;; Got error: arithmetic error DIVISION-BY-ZERO signalled
;; Operation was (/ 3 0).
;; and will divide by 1
;; 3
Using other restarts (find-restart)
Use find-restart.
find-restart 'name-of-restart
will return the most recent bound
restart with the given name, or nil
.
Hiding and showing restarts
Restarts can be hidden. In restart-case
, in addition to :report
and :interactive
, they also accept a :test
key:
(restart-case
(return-zero ()
:test (lambda ()
(some-test))
...
Handling conditions (handler-bind)
We just saw a use for handler-bind.
Its general form is:
(handler-bind ((a-condition #'function-to-handle-it)
(another-one #'another-function))
(code that can...)
(...error out))
If the handler returns normally (it declines to handle the condition), the condition continues to bubble up, searching for another handler, and it will find the interactive debugger (when itâs an error, not when itâs a simple condition).
We can study a real example with the
unix-opts
library, that
parses command line arguments. It defined some conditions:
unknown-option
, missing-arg
and arg-parser-failed
, and it is up
to us to write what to do in these cases.
(handler-bind ((opts:unknown-option #'unknown-option)
(opts:missing-arg #'missing-arg)
(opts:arg-parser-failed #'arg-parser-failed))
(opts:get-opts))
Our unknown-option
function is simple and looks like this:
(defun unknown-option (condition)
(format t "~s option is unknown.~%" (opts:option condition))
(opts:describe)
(exit)) ;; <-- we return to the command line, no debugger.
it takes the condition as parameter, so we can read information from
it if needed. Here we get the name of the erroneous option with the
conditionâs reader (opts:option condition)
.
Running some code, condition or not (âfinallyâ) (unwind-protect)
The âfinallyâ part of others try/catch/finally
forms is done with unwind-protect.
It is the construct used in âwith-â macros, like with-open-file
,
which always closes the file after it.
With this example:
(unwind-protect (/ 3 0)
(format t "This place is safe.~&"))
We do get the interactive debugger (we didnât use handler-bind or anything), but our message is printed afterwards anyway.
Conclusion
Youâre now more than ready to write some code and to dive into other resources!
Resources
- Practical Common Lisp: âBeyond Exception Handling: Conditions and Restartsâ - the go-to tutorial, more explanations and primitives.
- Common Lisp Recipes, chap. 12, by E. Weitz
- language reference
- Video tutorial: introduction on conditions and restarts, by Patrick Stein.
- Condition Handling in the Lisp family of languages
- z0ltan.wordpress.com (the article this recipe is heavily based upon)
See also
- Algebraic effects - You can touch this ! - how to use conditions and restarts to implement progress reporting and aborting of a long-running calculation, possibly in an interactive or GUI context.
- A tutorial on conditions and restarts, based around computing the roots of a real function. It was presented by the author at a Bay Area Julia meetup on may 2019 (talk slides here).
- lisper.in - example with parsing a csv file and using restarts with success, in a flight travel company.
- https://github.com/svetlyak40wt/python-cl-conditions - implementation of the CL conditions system in Python.
Page source: error_handling.md